Жилой комплекс "Сити-Чесс II"
          Телефон: +7 965 302-10-15
          E-mail: kuznetsov-pehu@yandex.ru
   
Профессиональные
навыки  
Публикации
Реализованные
проекты
Инвестиции
Инновации
Бизнес-планы
Вопросы-ответы






Содержание

ФОТОАЛЬБОМ
ОПИСАНИЕ ПРОЕКТА
СОСТАВ ЖИЛИЩНОГО КОМПЛЕКСА
Первая очередь застройки
Вторая очередь застройки
Третья очередь застройки
Четвертая очередь застройки
Пятая очередь застройки
ОБЗОР ЭНЕРГОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ.
Окна
Крыша
Коммуникации
Обустройство зеленого сектора
Энергосберегающие электроприборы
Повторное использование строительного
мусора
Примеры использования энергосберегающих
технологий





Жилой комплекс "Сити-Чесс II" .



Обзор энергосберегающих технологий.
Люди привыкли говорить об «энергосбережении». Выражение «экономия энергии» имеет моралистический подтекст. Отец обычно убеждает своих детей выключать свет, выходя из комнаты, и никогда без нужды не оставлять работающими электрические приборы. В конце концов, расточительность не только стоит денег, но и всегда считалась грехом. Когда была осознана необходимость охраны окружающей среды, реакция со стороны правительств и поставщиков электроэнергии не отличалась изобретательностью: вы (выставляющие слишком большие требования люди) можете получить столько охраны окружающей среды, сколько захотите, если вы готовы радикально уменьшить ваши требования. Упрощенческое понятие о сбережении энергии путем добровольного самоограничения позволило руководителям избежать творческого решения вопроса об энергии.
В последние годы появилось новое выражение: «рациональное использование энергии». Употребление этого термина усиливает репутацию оратора: предполагается, что он компетентен в вопросах энергетики. Поэтому, хотя мы и не решаемся отвергнуть этот термин, он нас не устраивает. Он звучит бюрократически, сложно и оборонительно. Он не доставляет никакой радости и непонятен, когда речь идет о связи между использованием энергии и технологическим прогрессом. Мы предпочитаем говорить об «энергетической производительности».
Сам по себе и в зависимости от условий, в которых вы находитесь, термин «производительность» может иметь положительный или отрицательный смысл. Это смешение значений — медвежья услуга экономистов, которые сузили термин до такой степени, что он означает только производительность труда. В прошлом производительность труда означала процветание, сегодня же она неизбежно связана с угрозой безработицы.
С другой стороны, энергетическая производительность — нечто, что все могут с радостью приветствовать. Практически никто от нее не проиграет.
Эта глава — о повышении энергетической производительности в четыре раза. Выражения «энергосбережение» или «рациональное использование энергии» просто недостаточны для того, чтобы передать соответствующий смысл жизнерадостной атаки на широко распространенных технологических динозавров. Понятие об «энергетической производительности» более соответствует поставленной задаче.
На первый взгляд может показаться, что, используя в качестве эталона «фактор четыре», мы исключаем значительную часть производства: выплавку алюминия, учитывая законы термодинамики, невозможно сделать в четыре раза более энергетически эффективной. То же справедливо и для производства хлора, цемента, стекла и некоторых других исходных материалов. Но нам не придется отказываться от потенциала «фактора четыре», которым обладают эти материалы. Алюминий и стекло в высшей степени пригодны для переработки, и такая переработка сэкономила бы большую часть энергии, необходимой для их производства из сырьевых материалов. Для некоторых конечных использований ряд материалов можно заменить другими, без какого-либо ущерба для производящего сектора, либо материалы могут быть использованы более целесообразно. Поэтому большинство применений металлов или стекла, с учетом всего срока службы, должно обеспечивать четырехкратное увеличение энергетической производительности.
Приведенные нами моральные и материальные причины для движения в сторону эффективности могут показаться несколько абстрактными. Теперь мы выскажемся более конкретно, указав семь мотивов для того, чтобы поступать именно так.
Жить лучше. Эффективное использование ресурсов улучшает качество жизни. Мы можем лучше видеть благодаря эффективным системам освещения, дольше сохранять продукты свежими в эффективно работающих холодильниках, производить товары более высокого качества на эффективных заводах, путешествовать более безопасно и с большим комфортом в эффективных транспортных средствах, чувствовать себя лучше в эффективных зданиях и более полноценно питаться эффективно выращенными сельскохозяйственными продуктами.
Меньше загрязнять и истощать. Все должно куда-то деваться. Отработанные ресурсы загрязняют воздух, воду или землю. Эффективность борется с отходами и, следовательно, уменьшает загрязнения, которые в сущности представляют собой направление ресурсов не по назначению. Эффективное использование ресурсов может внести значительный вклад в решение таких проблем, как кислотные дожди и изменение климата, уменьшение лесных площадей, потеря плодородия почвы и столпотворение на улицах. Эффективное использование энергии плюс продуктивное, устойчивое сельское хозяйство и выращивание лесов сами по себе могли бы устранить до 90% сегодняшних экологических проблем, причем не ценой затрат, а — при наличии благоприятных условий — с получением прибыли. Эффективность может высвободить много времени, и за это время мы научимся вдумчиво, разумно и последовательно решать мировые проблемы.
Получить прибыль. Эффективное использование ресурсов обычно приносит прибыль: вам не приходится сейчас платить за ресурсы, а поскольку они не превращаются в загрязнители, вам позже не придется платить за очистку от них.
Выходить на рынки и привлекать предпринимателей. Поскольку эффективное использование ресурсов способно приносить прибыль, значительную часть эффективности можно реализовать с помощью рыночного механизма, движимого индивидуальным выбором и конкуренцией фирм, а не указаниями правительств относительно того, как нам жить. Рыночные силы теоретически могут управлять эффективностью ресурсов. Однако перед нами все еще стоит серьезная задача по устранению препятствий и обращению вспять безрассудных устремлений, которые не дают рынку работать на полную мощь.
Приумножать использование дефицитного капитала. Деньги, высвобождаемые благодаря предотвращению потерь, можно использовать для решения других проблем. В частности, развивающиеся страны получают прекрасную возможность не вкладывать дефицитный капитал в неэффективную инфраструктуру, а найти ему лучшее применение. Если страна покупает оборудование для производства весьма энергоэффективных ламп или окон, то она может обеспечить энергоснабжение, затратив всего одну десятую тех средств, которые потребовались бы для строительства большего количества электростанций. Эти инвестиции окупаются по меньшей мере в три раза быстрее, и благодаря повторному инвестированию капитала в другие отрасли объем услуг, оказываемых за счет вложенного капитала, можно увеличить более чем в 30 раз. (По некоторым оценкам, экономия может оказаться еще выше). Для многих развивающихся стран это единственный реальный путь сравнительно быстрого достижения процветания.
Повышать безопасность. Борьба за ресурсы вызывает или усугубляет международные конфликты. Эффективное использование экономит ресурсы и уменьшает нездоровую зависимость от них, которая служит источником политической нестабильности. Эффективность может сократить число международных конфликтов из-за нефти, кобальта, лесов, воды — всего того, что у кого-то имеется, а кому-то другому хочется иметь. (Некоторые страны платят ценой военных расходов, а также напрямую за свою зависимость от ресурсов: от одной шестой до четверти военного бюджета США ассигнуется на силы, основная задача которых состоит в получении или сохранении доступа к иностранным ресурсам.) Энергосбережение может даже косвенно препятствовать распространению ядерного оружия благодаря применению более дешевых и безопасных в военном отношении источников энергии вместо энергетических ядерных установок и соответствующих материалов двойного назначения, специалистов и технологий.
Быть справедливым и иметь больше рабочих мест. Пустая трата ресурсов — это оборотная сторона деформированной экономики, раскалывающей общество на тех, у кого есть работа, и тех, у кого ее нет. Если человеческая энергия и талант не находят себе должного применения — это трагедия. И все же основная причина растрачивания человеческих ресурсов — ошибочный и расточительный путь научно-технического прогресса. Мы делаем «продуктивными» все меньше людей, потребляя больше ресурсов и фактически выталкивая на обочину одну треть мировой рабочей силы. Нам нужен рациональный экономический стимул, который позволил бы решить сразу две насущные задачи: обеспечить занятость для большего числа людей и сэкономить ресурсы. Предприятия должны избавляться от непродуктивных киловатт-часов, тонн и литров, а не от своих работников. Это произошло бы намного быстрее, если бы мы уменьшили налогообложение рабочей силы и соответственно увеличили налоги на использование ресурсов. Что же нового в эффективности
Эффективность — понятие столь же старое, как и род человеческий. Прогресс человечества во всех обществах определялся прежде всего новыми методами, позволяющими сделать больше меньшими усилиями, более продуктивно использовать все виды ресурсов. Но за последние 150 лет значительная часть технологических усилий была направлена на повышение производительности труда, даже если это требовало больших затрат природных ресурсов. Недавно в эффективном использовании ресурсов произошла концептуальная и практическая революция, однако большинство людей еще не слышало о ее новом потенциале.
Со времени нефтяного кризиса 1970-х годов мы через каждые пять лет узнавали, как использовать электроэнергию примерно в два раза эффективнее, чем раньше. Каждый раз эта удвоенная эффективность теоретически стоила на две трети меньше. Аналогичный прогресс наблюдается и сегодня благодаря новым технологиям и особенно благодаря пониманию того, как выбрать и объединить существующие технологии. Таким образом, успехи в увеличении отдачи ресурсов при снижении расходов огромны. Их можно сравнить с революцией в области компьютеров и бытовой электроники, где все постоянно уменьшается в размерах, становится быстрее, лучше и дешевле. Однако эксперты по энергетике и материальным ресурсам еще не начали думать в терминах постоянного увеличения энергоэффективности. Похоже, что разговоры в официальных организациях, определяющих политику в области энергетики, все еще сосредоточены на том, сколько угля следует заменить атомной энергией и по какой цене, т. е. на вопросах производства энергии. Между тем революция в сфере потребления энергии делает эти рассуждения устаревшими и неуместными.
Широко распространено предвзятое мнение, будто экономия большего количества энергии всегда стоит дороже. Обычно считается, что за пределами известной зоны «уменьшающейся прибыли» находится стена, за которой дальнейшая экономия окажется непомерно дорогой. В прошлом это было справедливо как для экономии ресурсов, так и для борьбы с загрязнениями и великолепно вписывалось в традиционную экономическую теорию.
Однако сегодня есть не только новые технологии, но и новые способы связать их вместе, так что большую экономию энергии часто можно обеспечить при меньших затратах, чем малую экономию. Когда реализована серия увязанных между собой эффективных технологий — в должной последовательности, правильным образом и в нужных пропорциях (подобно поэтапному приготовлению пищи по хорошему рецепту), из отдельных технологических деталей возникает новый единый процесс, сулящий экономические выгоды.

3.3.1 Окна
Использование суперокон
Стеклопакет с двойным и даже тройным остеклением без специальных дополнительных мер лишь формально обеспечивает нормативное значение сопротивления теплопередаче. В соответствии с новыми строительными нормами требуемое приведенное сопротивление теплопередаче для окон должно составить Ртр = 0,5 м/Вт. Двойной стеклопакет имеет характеристику R = 0,33 м/Вт, что является величиной производной, так как методика испытаний показала, что он «разбивается» на несколько краевых и центральных зон. Это означает практически гарантированное образование конденсата и даже оледенение внутренней поверхности стекла.
Для решения этой проблемы чаще всего используют так называемое К-стекло, однако это лишь незначительно повышает сопротивляемость. Более эффективным (и более дорогим) является применение стекол с «мягким» напылением, наносимым в вакуумных магнетрон-установках. Но эта технология имеет ряд недостатков: дороговизна, низкая светопропускающая способность; кроме того, распакованный ящик стекла должен быть израсходован в течение достаточно короткого времени.
В связи с вышесказанным особого внимания заслуживает применение специальных полимерных пленок, воспринимающих напыление с меньшей степенью потерь светопропускания. Один из рациональных методов усовершенствования конструкций стеклопакетов — применение технологии «тепловое зеркало», разработанной несколько лет назад в США.
В суперокнах применяются невидимые прозрачные высокотехнологичные пленки, отделяющие видимое излучение от инфракрасного (теплового). Видимый свет проходит через окно; инфракрасное излучение отражается. Сейчас существуют суперокна с сотнями тысяч различных «оттенков», причем каждый отдельный вариант предназначен для конкретного климата, здания и ориентации. Управляя входящими в здание и выходящими из него с каждой стороны потоками тепла и света, проектировщик может повысить комфорт, значительно уменьшить потребность в нагревательном и охлаждающем оборудовании и в энергии, необходимой для работы такого оборудования, и тем самым сократить как строительные, так и эксплуатационные затраты.
Сама технология суперокон заключается в изготовлении двух отдельных продуктов. Первый — стеклопакет, в котором теплоотражающая пленка помещается между двумя стальными (!, менее проводящими, чем алюминиевые) дистанционными рамками.
Второй продукт — собственно пленка, натягиваемая на стальную рамку. Возможно ее применение и без стеклопакетов при реставрации существующих окон. В этом случае стальные рамки изготавливаются по размерам каждой секции окна и устанавливаются со съемным крепежом между стеклами обычных двустекольных окон. В комплексе с установкой резинового уплотнителя между рамой и створкой данное мероприятие позволяет достичь фантастических показателей — 0,75-0,8 м^/Вт, характерных для финских деревянных окон с тройным остеклением.

3.3.2 Крыша
Строительство стропил
Древесина — это удивительный строительный материал, легкий, привлекательный и естественный. При должном отборе, обработке и уходе он более надежен и долговечен, чем бетон. На его производство идет менее одной четверти («фактор четыре»!) энергии, необходимой для бетона. Вместо обычной мягкой древесины хвойных пород здесь использован продукт из «технической древесины» или «древесины с ориентированными слоями», выпускаемый крупной фирмой «ТрасДжойст МакМиллан» (Айдахо). Этот продукт прессуется при высокой температуре и под давлением из низкосортной, обычно мелкой мягкой древесины низкой плотности, (например, осины или тополя), в плотную заготовку толщиной 20 см и шириной несколько метров. На практике получается «синтетическая твердая древесина», обладающая прочностью, однородностью, предсказуемостью свойств и, в отличие от обычной древесины, она свободна от сучков и других дефектов.
«Фактор четыре» — не предел возможностей. Сейчас некоторые фирмы прокладывают между слоями естественной или технической древесины тонкие слои углеродного волокна или полиамидного волокна «кевлар». Это более чем вдвое увеличивает прочность деревянного элемента, уменьшает расход древесины, делает элемент более легким и позволяет производить его из низкосортного лесоматериала. Кроме того, «Беллкомб» — фирма в Миннеаполисе — разработала картоноподобную сотовую структуру (с возможностью повторного использования), из которой изготавливаются разнообразные детали определенных форм и размеров. Они прокладываются между недорогими листами из слоеной древесины и плотно пристыковываются друг к другу, как при сборке миниатюрного дома в детском конструкторе. Два взрослых человека, не имеющие никакой специальной подготовки, могут соорудить из этого материала конструкцию размером с коттедж за 20 минут и снова разобрать ее за 10 минут. Она герметична, огнестойка, в ней легко обеспечить сверхизоляцию путем добавления в «сэндвич» слоев пеноматериала. Такая конструкция экономит примерно 75—85% древесины, а в дальнейшем можно ожидать увеличения экономии. Кровля крыши
Черепица - древнейший кровельный материл.. Черепица не только самый долговечный вид кровли, но еще и огнестойкий, простой в эксплуатации, красивый и традиционно престижный. Все разновидности черепиц (штампованная, пазовая ленточная, прокатная волнистая и т.д.) при всей привлекательности протекают, и обычно они тяжелые или сверхтяжелые. Сейчас на смену глиняной обжигной черепицы пришли те же изделия, но из других материалов. Появились новые всевозможные изделия чаще всего из полимерных, стеклянных, металлических материалов. Но последние только условно можно отнести к черепице. Идеальным материалом для кровли такого типа считается асбестоцемент. Его конструктивные, физические свойства для кровельного материала превосходят все остальные. Изготовление черепицы, предположим из качественной асбестовой смеси далеко превзошло бы все покрытия этого типа по всем характеристикам. Это позволило бы выпускать плиты черепицы для покрытия крупных технических и сельскохозяйственных построек с площадью чистого покрытия до 0,5 кв. м одной плиткой, а так же изделия эстетически оптимальных плиток для зданий любой классности с гарантией на 100 лет. Она предельно проста, надежна и долговечна. Однослойное покрытие имеет минимальный вес и современный лаконичный рисунок, и не нуждается в дополнительных средствах крепления. Простота изделия без мелкого рельефа пазов и ослабленных элементов закроев повышает прочность черепицы, упрощает технологию ее изготовления, позволяет формовать с открытой лицевой стороной и значительно упрощает раскладку черепицы в покрытии. Раскладка выполняется рядами по восходящей, независимо с какого места ряда и в каком направлении начата эта работа.

3.3.3 Коммуникации
Вентиляция
  • Буферы тепла и холода Большая часть Россия расположена в резкоконтинентальных широтах, где температура колеблется от –30 до + 50 градусов. Оптимальная температура для человека +20 градусов, для поддерживания этого режима затрачивается большое количество энергии на нагрев или охлаждение воздуха. В земле на глубине 3-4 метров (при отсутствии вечной мерзлоты, на крайнем севере) температура зимой не опускается ниже +2 , а летом не выше +10. Пропустив входящий воздух под землей, можно обеспечить необходимую циркуляцию воздуха в помещениях без особых затрат.
  • Теплообменники воздух-воздух Значительным потерям энергии является выходящий воздух, который предварительно прошёл систему нагрева, затем в процессе дыхания человека содержит большое количество углекислого газа. А ведь его тепло можно использовать для нагрева входящего воздуха, для этого можно использовать теплообменники.
  • Датчик углекислого воздуха Человек не всегда находится во всех помещениях и необходимая циркуляция в них различна. Датчики углекислого воздуха в сочетании с энергосберегающими вентиляторами могут значительно понизить затраты на предварительную подготовку воздуха, при максимальном комфорте для человека.

Электропитание и установка электропроводки
Переменный ток во многих случаях неэкономичен, изменение направления намагниченности в электродвигателях примерно 100—120 раз в секунду выделяет много тепла в железе.. Работающий на переменном токе 20-ваттный насос может быть заменен 8-ваттным, работающим на постоянном токе. При этом потребление электроэнергии уменьшается в 2,5 раза. Для компьютеров, видеомагнитофонов или вентиляторов потенциальные сбережения еще более впечатляющи: здесь использование постоянного тока могло бы быть в 6—10 раз эффективнее, чем переменного. Для бытовых электроприборов, таких как холодильники и телевизоры, повышение эффективности в связи с использованием постоянного тока составило бы около 60%.
Для получения электричества напряжением 220 вольт солнечными батареями, необходимую для типичной семьи из четырех человек, которая обычно использует неэффективные электроприборы, работающие на напряжении 220 вольт переменного тока, требуется по меньшей мере 30 квадратных метров солнечных батарей. Однако солнечные батареи дороги. Вместо этого достаточно было бы использовать электроприборы на постоянном токе, какие-нибудь 8 квадратных метров солнечных батарей
Исследования оптимального напряжения для питания постоянным током.
При 12 вольтах, т. е. при напряжении автомобильных аккумуляторных батарей, для удовлетворения потребности в энергии обычной семьи потребовались бы медные провода (диаметром сечения в 1,954 квадратных миллиметра).
При напряжении 24 вольта необходимая площадь поперечного сечения уменьшается до 0,977 квадратных миллиметров,
При 48 вольтах сокращается до величины —0,489 квадратных миллиметра.
Но к сожалению электроприборы, работающие на постоянном токе напряжением в 48 вольт, практически не выпускаются (производители заявляют, что на них нет спроса), производятся только приборы на 12 вольт (редко на 24 — для лодок, автоприцепов и т. д.)
  • Солнечные батареи Источник каждого из видов возобновляемой энергии в солнце. Солнечная энергия - это улавливание прямого излучения солнца. Биомасса состоит из растительного вещества, которое произвело свою энергию от солнца путем фотосинтеза. Реки питаются дождями, которые создаются конвективным циклом водяного пара из океанов и озер, который также приводится в действие теплом солнца. Ветер дует над поверхностью земли вследствие различного нагрева земли солнцем. По одной из оценок предполагается, что солнце дает земле в 15 000 раз больше энергии, чем каждый год потребляется человечеством. Солнечные батареи используют особенность кремния, который при попадании солнечного света выделяет небольшое количество электроэнергии. Отдельные батареи вырабатывают только около одного ватта электроэнергии, однако, когда множество батареек объединяется в панель, они могут вырабатывать десятки киловатт.
  • Топливные элементы Топливный элемент производит электричество, реагируя водород и кислород с катализатором, формируя воду при создании электричества и теплоты. Водород подается к аноду топливного элемента, и кислорода (обычно от окружающего воздуха) к катоду. Реакция управляет потоком электронов от анода до катода через внешнюю электрическую цепь.
  • Ветреные генераторы Сегодня ветер используется в современных ветровых турбинах для выработки электричества. Это может быть отдельный агрегат, снабжающий электричеством ферму, или же сложные системы, питающие энергией электросистему. Самые маленькие турбины вырабатывают только 500 ватт, что достаточно для телевизора, а мощность самых больших составляет несколько мегаватт, чего хватит для небольшого города. В сложных системах, называемых ветряными фермами, обычно используются турбины мощностью около 300 кВт, установленные на высоте до 50 метров, а диаметр лопастей может составлять до 30 метров.
  • Термоэлектрические генераторы. Работа термоэлектрических генераторов (ТЭГ) основана на преобразовании тепловой энергии в электрическую. Выделяемое при сгорании топлива тепло может быть использовано для обогрева помещений.

Отопление
Отопление (и кондиционирование) экодома обычно содержит основную и вспомогательную системы помимо пассивной солнечной. Основная обычно состоит из солнечного теплового коллектора и тепло аккумулятора, запасающего тепло по суточным и сезонным циклам. Конструкции могут быть различными: в Швеции и Норвегии предпочитают твердотельные аккумуляторы под домом; в США и Германии - жидкостные внутри дома (на 200 кв. м жилой площади - около 15 тонн воды). Обычно такие системы стоят недешево, однако их можно сделать очень дешевыми, используя местные материалы и комплектующие: например, тепловой коллектор на крышу экодома конструкции БО МАЭ стоит всего 50$/Квт установленной мощности и не боится заморозков. Обязательной является система рекуперации тепла при вентиляции.
Вспомогательной отопительной системой является обычно камин или небольшая печь медленного горения. Фирма ISOMAX использует в качестве вспомогательной или "аварийной" систему электроподогрева пола с использованием ночного электричества мощностью 2 Вт/кв.м жилой площади.
  • Длинноволновые обогреватели В отличие от обычного конвективного отопления (центральное, паровое или масляные радиаторы), которые должны прогреть все помещение до потолка, чтобы создать на уровне пребывания человека комфортную температуру воздуха, длинноволновые обогреватели прогревают лишь тот объем, в котором находятся люди. При этом отпадает необходимость компенсировать теплопотери в объеме помещения, находящемся выше роста человека, и следовательно тратить на это энергию. В помещениях с более высокими, чем это обычно бывает в жилых помещениях, потолками доля не прогреваемого объема над зоной пребывания людей увеличивается, следовательно, возрастает и экономичность Поверхность теплоотдачи от пола и предметов, нагретых длинноволновыми обогревателями, в жилых помещениях в среднем в 5-10 раз превышает поверхность теплоотдачи традиционных отопительных приборов. Поэтому объем воздуха в зоне пребывания людей прогревается до заданной потребителем температуры быстрее, чем это в состоянии сделать конвективные системы отопления, помещение выходит на заданный потребителем тепловой режим быстрее, а когда оно прогреется, для поддержания заданной температуры система длинноволнового отопления включается реже, чем обычная, тем самым потребляя меньше энергии. С увеличением высоты подвеса обогревателей (например, в складских помещениях) поверхность теплоотдачи увеличивается еще больше, тем самым увеличивается экономичность. В жилых помещениях, оборудованных конвективными системами отопления, принято прогревать воздух на уровне головы человека в среднем до 18оС для того, чтобы на уровне пола температура воздуха была 16оС (чтобы не мерзли ноги). Длинноволновое отопление при такой температуре у пола обеспечивает температуру на уровне головы 15оС, т.е. нет необходимости прогревать помещение на лишние 3оС. Это еще один источник экономии.

Водопровод и сантехника
  • Использование сточной и собираемых с крыш дождевой воды. Эффективное водопотребление можно сочетать с альтернативным водоснабжением. Например, использование дождевой воды для всего оборудования, за исключением подачи питьевой воды, могло бы сократить коммунальное водоснабжение на 90%, сэкономить мыло (дождевая вода настолько мягкая, что требует меньше мыла), а также дать существенное количество сточной воды для внешнего потребления. Хотя использование сточной и собираемой с крыши дождевой воды может показаться необычным, эти источники уже сейчас используются во всем мире. Во многих районах штата Гавайи, на Карибских островах, в Австралии, в Техасе люди нередко удовлетворяют свои потребности частично или полностью за счет дождевой воды. В Германии в качестве одного из решений проблемы ливневого стока поощряется развитие систем сбора дождевой воды. В Токио многие новые административные здания и бейсбольный стадион «Токио доум» оборудованы системами сбора дождевой воды, поставляющими воду для туалетов и башенных охладителей. В Калифорнии аналогичные системы приобрели популярность после принятия законов, разрешающих применение сточной воды для подпочвенного орошения и смыва в туалетах.
  • Туалетные бочки с двойным сливом (расход 5,7-3 литра на слив) Австралийский туалет с двойным сливом обеспечивает сокращение расхода воды на 80% по сравнению с некогда стандартным туалетом, в то же время он работает лучше и обходится примерно во столько же (а иногда и меньше). Весьма надежным оказался шведский туалет с расходом 3 литра на слив, которым с 1983 г. пользуются многие из 40 тысяч посетителей Института Рокки Маунтин. Такие конструкции обеспечивают лучший смыв, чем модели с расходом 19 литров на слив, поскольку уменьшенный на 84% объем воды вместо бесцельного кружения в водовороте концентрируется в сильный, точно направленный поток.
  • Душевые головки и смесители (расход 9,5-2 литра в минуту) В 1980 г. был разработан душ, в котором умеренная струя воды при расходе 2 литра в минуту интенсивно разгоняется потоком теплого воздуха под низким давлением. В конструкции использовались элементы предложенного Бакминстером Фуллером капельного душа для подводных лодок. Потребляя в 4—5 раз меньше воды, чем достаточно эффективная душевая головка, или в 8—15 раз меньше, чем модель, существовавшая до 1992 г., этот душ расходует для работы вентилятора только 1—2% энергии, сберегаемой благодаря уменьшению нагреваемого количества воды: 0,43 кВт по сравнению с 20—75 кВт. Дополнительные затраты на оборудование в значительной степени компенсировались снижением расходов на монтаж, поскольку горячая вода подается по очень маленькой гибкой трубке, а не по большой и жесткой трубе, для установки которой нужен сантехник. Трубка настолько мала, что ее не нужно изолировать: любая теплоизоляция, за исключением очень толстой, привела бы к большей потере энергии за счет увеличения общей площади поверхности трубы.
  • Стиральные машины с пониженным расходом воды Горизонтально-осевая стиральная машина с загрузкой сверху, разработанная «Стэйбер индаст-риз» — небольшой фирмой в Грувпорте (Огайо), обеспечивает в несколько раз более мощное вихреобразование в воде, проходящей через одежду; при этом на стирку расходуется лишь одна треть воды (и энергии на ее нагревание) и одна четверть мыла по сравнению с обычной машиной.

Проводка линий связи
В наше время очень бурно развивается электроника и мы не можем представить себя без компьютеров, интернета, электронной почты, электронных баз данных. Проводка коммуникаций связи занимает все большое значение в нашей жизни.
  • Электронная почта экономит бумагу
  • Видеоконференции экономят невосполнимые энергетические затраты

Проводка канализации
Коммуникации канализации очень изношены и дорогие в обслуживании, также не решают проблему утилизации хозбытовых стоков (например, проблему осадка сточных вод), а только переносит ее из одного места в другое, и главное - она не является системой локально замкнутого цикла. При индивидуальной застройке это как бы "теплотрасса наоборот", и вреда она наносит не меньше, чем наши пресловутые теплотрассы. Вместе с тем, американское "министерство здравоохранения" давно сертифицировало и разрешило использовать даже в городах очень дешевые локальные биологические системы утилизации хозбытовых стоков, работающие по принципу "замкнутого цикла" и не создающие проблем ни зимой (до -50С), ни летом (до +50С), позволяющие пользоваться всеми благами цивилизации при двух условиях: в туалет нельзя сливать концентрированные яды и бросать биологически не разлагаемые предметы: пластик, некоторые виды бумаги и т.д.. Можно использовать специальные компостные туалеты, разработанные в Швеции и США и использовать компост как дешевое органическое удобрение.

3.3.4 Обустройство зеленого сектора
Подпочвенное капельное орошение
В орошаемом земледелии, где отдельные хозяйства используют воду очень неэффективно, многие более крупные промышленные фермы достигают эффективности водопользования на уровне 40—60%. Это означает, что из всей воды, подаваемой на поля, 40—60% сначала забирается культурами для удовлетворения своих потребностей, а затем испаряется каждым растением. Остальная часть теряется из-за поверхностного стока, просачивания воды в глубь почвы или уносится ветром при разбрызгивании дождевальной установкой. Повышение эффективности водопользования до 100%, так, чтобы каждая подаваемая на поле капля воды в конечном итоге испарялась самим растением, увеличило бы экономию ресурсов лишь в 1,7—2,5 раза.
Наиболее эффективен переход с полива по бороздам и по поверхности на подпочвенное капельное орошение, он повысил эффективность использования воды на поле примерно с 60% до 95% и более, т. е. в 1,6 раза. Линии капельного орошения, закопанные на глубину 20—25 см, испускают небольшие количества воды прямо в зоне корней растения. Поверхность почвы обычно остается сухой, что уменьшает поверхностное испарение, а корневая зона никогда не смачивается до насыщения, что сокращает объем стока и просачивание в глубину. Несколько процентов теряемой воды приходятся в основном на то, чтобы время от времени промывать линии капельного орошения.

3.3.5 Энергосберегающие электроприборы
Освещение
Люминесцентные лампы (экономя электроэнергии в 2.5 - 4 раза, срок службы до10 лет)
Обычные лампы накаливания по существу являются электронагревателями, излучающими лишь 10% своей энергии в виде света. Почти все лампы накаливания можно без труда заменить миниатюрными люминесцентными лампами, впервые выпущенными в Голландии и Германии. Но компактные люминесцентные лампы служат примерно в 10 раз дольше, поэтому 200 миллионов таких ламп, продаваемых ежегодно, эквивалентны примерно двум миллиардам ламп накаливания, что составляет одну пятую долю количества поставляемого света. Различие в сроке службы означает также, что если в половину патронов во всем мире ввернуть компактные лампы дневного света, то их продажа все равно составит только около 5% от продажи ламп накаливания.
Компактные люминесцентные лампы иллюстрируют также, как можно избежать загрязнения окружающей среды без каких-либо затрат и даже с выгодой, потому что дешевле экономить энергию, нежели ее производить. Одна 18-ваттная компактная люминесцентная лампа, заменяющая стандартную 75-ваттную лампу накаливания, способна на протяжении своего срока службы сэкономить (Ловинс, 1990):
  1. тонну двуокиси углерода, 4 кг окислов серы и 1 кг окислов азота, не считая других выбросов от работающей на угле станции;
  2. полкюри стронция-90 и цезия-137 (среди других высокоактивных отходов) и плутония в количестве, эквивалентном 0,4 тонны тринитротолуола, на атомной электростанции;
  3. по меньшей мере 200 литров нефти, потребляемой электростанцией, работающей на жидком топливе. (Этого достаточно, чтобы проехать 1600 км на серийном автомобиле или пять раз пересечь США на гиперавтомобиле.) Топливная энергия, сэкономленная благодаря замене восьми ламп накаливания, работающих непрерывно, на компактные люминесцентные лампы, достаточна для обычной заправки топливом средней американской автомашины. Более того, завод стоимостью в 7,5 миллиона долларов производит до пяти тысяч компактных люминесцентных ламп в день. Электроэнергия, сберегаемая лампами, которые выпускает этот завод, позволяет обойтись без строительства электростанций, стоящих по меньшей мере в 40 раз больше. Экономится столько энергии, сколько поступает с морской нефтяной платформы, стоящей несколько сот миллионов долларов; либо столько, сколько используют 188 тысяч американских автомобилей, или шесть полностью загруженных, высокоэкономичных пассажирских реактивных самолетов «Боинг-757», выполняющих регулярные рейсы на дальние расстояния.
Компактные люминесцентные лампы — не единственный выбор. Крупные лампы накаливания лучше всего заменять металлогалоид-ными или натриевыми лампами высокого давления. Некоторые из них сейчас дают чистый белый свет, практически не отличимый от дневного. Там, где требуется концентрированный пучок света, например, на выставке товаров розничной торговли, можно использовать специально сконструированные лампы с отражением света от кварцевой галогенной капсулы; при этом применяются тонкие пленки, подобные пленкам в суперокнах, отражающие тепло обратно на нить накала, которой поэтому необходимо меньше электроэнергии, чтобы оставаться раскаленной добела. Эта конструкция расходует 60 ватт для создания такого света, на который раньше обычно требовалось 150 ватт.
Оргтехника
  • Энергосберегающие компьютеры
    Неэффективный современный настольный компьютер с монитором в рабочем режиме расходует 150 ватт. Обычно по крайней мере половина этой мощности приходится на цветной монитор, который можно сравнить с цветным телевизором. Но при тщательном выборе цветного телевизора обнаруживается, что самые эффективные модели потребляют в 4 с лишним раза меньше электроэнергии по сравнению с наименее эффективными, обладающими такими же размерами, характеристиками и ценой.
    Некоторые виды компьютерных микросхем и источников питания потребляют гораздо больше энергии, чем другие. Дисководы жесткого диска, которым около пяти лет, могут расходовать в 5—10 раз больше энергии, чем современные, которые работают лучше и стоят меньше. Портативные компьютеры, предназначенные для долгой работы на легких батареях, потребляют всего несколько ватт, но по своим возможностям не уступают настольным персональным компьютерам: например ноутбук, который потребляет лишь 1,5 ватта, или 1% от нормы для неэкономичной и громоздкой настольной ЭВМ с точно такими же возможностями. Упомянутый компьютер работает в течение шести — девяти часов на никелево-металлогидридных батареях весом всего лишь в 150 г, или на 100-граммовых литиевых батареях. Некоторые из самых последних компьютеров типа записной книжки могут работать месяц на двух маленьких щелочных батарейках типа АА.
  • Энергосберегающие принтеры
    Принтеры, факсы и другие «отображающие» аппараты обычно потребляют в офисе даже больше электроэнергии, чем компьютеры и мониторы. В современных устройствах для получения изображения на светочувствительном барабане применяется лазер, а затем идет стандартный ксерографический фотокопировальный процесс, заканчивающийся наплавлением пластмассового тонерного порошка на бумагу горячим барабаном. На нагревание барабана уходят многие сотни ватт, причем, нужно это или нет, но обогревается офис. Лазерный принтер — тоже очень точный электрооптический аппарат, включающий в себя многие сложные компоненты.
    Что касается современных устройств струйной печати, то в них вместо горячего барабана для подогрева быстросохнущих чернил используются микроскопические токи, пронизывающие печатающую головку величиной с грецкий орех. Головка разбрызгивает на бумагу мельчайшие капельки, создающие изображение. Вся «соль» — в печатающей головке; механизм принтера очень дешев и прост, его назначение — только передвигать бумагу. Цена головки не высока, поскольку она выпускается в массовых количествах, подобно микросхемам (к тому же ее можно повторно заполнять свежими чернилами). Струйные принтеры и факсы потребляют лишь 1 или 2 % электроэнергии, которую расходуют их лазерные эквиваленты; в то же время качество изображения примерно одинаково, как одинакова и скорость выполнения типичной печатной работы. Кроме того, они меньше, легче, надежнее и стоят вдвое дешевле.
  • Фотокопировальные машины
    Рассмотрим фотокопировальные машины — самые большие «пожиратели» электричества в типичном офисе. Можно сэкономить треть энергии, потребляемой стандартной фотокопировальной машиной, благодаря тому, что просто тщательно выбирать и купить более совершенную конструкцию. Можно сэкономить более половины расходуемой энергии при еще меньших капитальных затратах и более высокой надежности, перейдя на новую модель. Она не потребляет энергии в дежурном режиме, поскольку ее устройство для наплавления (обычно наплавляющее термопластический тонер-ный порошок на бумагу) представляет собой не металлический ролик, а резиновый ремень, который не нагревается до того момента, пока бумага не приблизится к нему. Нам также хотелось иметь небольшое копировальное устройство, способное сделать копию мгновенно, без затрат времени на прогрев. Раньше использовались модели копировального устройства, которое выдавливает вос-кообразный тонерный порошок на бумагу холодным прижимным роликом вообще без использования нагрева. Эта модель сэкономила 90% как энергии, так и капитальных затрат, и она гораздо более надежна, чем модели с горячим наплавлением. Для печати большого числа документов, например счетов, уже широко применяются крупные высокоскоростные модели.
    В ближайшем будущем новые виды тонера смогут плавиться при помощи вспышки ультрафиолетового излучения вместо того, чтобы наплавляться на бумагу. Многие производители уже ввели новые машины, делающие большое количество копий документа, не прибегая к ксерографии — совсем как старые множительные аппараты, но полностью с цифровым управлением. Они потребляют лишь 1 % энергии, которую расходует фотокопировальная машина.

Холодильники
Энергосберегающие холодильники «ФРИА» представляет собой своего рода многокамерный холодильник с определенными конструктивными особенностями, заимствованными у кладовой. Но «ФРИА» использует для охлаждения высокие технологии, более толстую и более качественную изоляцию, чем обычные холодильники. У нее чрезвычайно долгий срок службы, причем камеры могут ремонтироваться или заменяться отдельно друг от друга. В нее можно включить морозильные камеры. Она удобна, прекрасно работает и имеет привлекательный вид. В зависимости от охлаждающего устройства, используемого в холодильнике «ФРИА», энергосбережения могут достигать значительной величины. Стандартная модель «ФРИА» в 1994 г. потребляла не более 0,40 кВт-ч за сутки по сравнению с 0,85 кВт-ч для более традиционных немецких холодильников. Если бы холодильный агрегат, установленный в холодильнике «ФРИА», был сделан фирмой «Грам», то энергопотребление снизилось бы до 0,26 кВт-ч в день. Еще один путь — интегрировать в холодильник «ФРИА» систему подогрева горячей воды «Цеолит». Эта система подачи горячей воды, изобретенная мюнхенской фирмой «Цеотех», обладает на 30% более высокой эффективностью, чем нагреватели горячей воды, соответствующие промышленному стандарту. Дополнительным ее достоинством является то, что она обеспечивает эффективное охлаждение.

3.3.5 Повторное использование строительного мусора
Что происходит с отходами строительства, когда здание сносится или реконструируется? Большая их часть в виде строительных отходов попадает в места захоронения, которые быстро заполняются. Но большая часть отходов можно повторно использовать или переработать.
Бетонные блоки можно использовать повторно для строительства новых сооружений, остальную часть (не пригодную для использования) дробить для получения заполнителя. Деревянные балки, настил и другие пиломатериалы утилизировать и перепродать, так же как и металл, разнообразное оборудование, стены из сухой кладки (отправить на гипсовый завод на переработку). Сыпучий гравий может использован для пешеходных дорожек. Фундамент, плиты перекрытий и опоры, содержащие большое количество проволоки и поэтому непригодные для переработки в наполнитель, отправить для повторного использования на участоки засыпки дороги в качестве подложки.


    /body> и.

    /body>

    /body>